2.3 Calculating Limits Using the Limit Laws

Limit Laws: Suppose that \boldsymbol{c} is a constant and the limits

$$
\lim _{x \rightarrow a} f(x) \text { and } \lim _{x \rightarrow a} g(x) \text { exist. Then, }
$$

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$ Sum Law
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$ Difference Law
3. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$ Constant Multiple Law
4. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$ Product Law
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ Quotient Law
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ Power Law
7. $\lim _{x \rightarrow a} c=c$ (The limit of a constant is a constant.)
8. $\lim _{x \rightarrow a} x=a$ (The limit as x approaches $\mathrm{a}=\mathrm{a}$.)
9. $\lim _{x \rightarrow a} x^{n}=a^{n}$
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ (If n is even, we assume that $\mathrm{a}>0$.)
11. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$, Root Law
n is a positive integer. (If n is even, we assume that $\mathrm{a}>0$.)

Example: Evaluate the limits and justify each step by indicating the appropriate limit law(s).
(a) $\lim _{x \rightarrow 3}\left(5 x^{3}-3 x^{2}+x-6\right)=\lim _{x \rightarrow 3} 5 x^{3}-\lim _{x \rightarrow 3} 3 x^{2}+\lim _{x \rightarrow 3} x-\lim _{x \rightarrow 3} 6$
$=5 \lim _{x \rightarrow 3} x^{3}-3 \lim _{x \rightarrow 3} x^{2}+\lim _{x \rightarrow 3} x-\lim _{x \rightarrow 3} 6$

$$
\begin{equation*}
=5(3)^{3}-3(3)^{2}+3-6 \quad(7,8,9) \tag{3}
\end{equation*}
$$

$$
=5(27)-3(9)+3-6
$$

$$
=135-27=3-6
$$

$$
=105
$$

(b) $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}=\frac{\lim _{x \rightarrow-2} x^{3}+2 x^{2}-1}{\lim _{x \rightarrow-2} 5-3 x}$

$$
\begin{align*}
& =\frac{\lim _{x \rightarrow-2} x^{3}+\lim _{x \rightarrow-2} 2 x^{2}-\lim _{x \rightarrow-2} 1}{\lim _{x \rightarrow-2} 5-\lim _{x \rightarrow-2} 3 x} \tag{5}\\
& =\frac{\lim _{x \rightarrow-2} x^{3}+2 \lim _{x \rightarrow-2} x^{2}-\lim _{x \rightarrow-2} 1}{\lim _{x \rightarrow-2} 5-3 \lim _{x \rightarrow-2} x} \tag{3}\\
& =\frac{(-2)^{3}+2(-2)^{2}-1}{5-3(-2)}(7,8,9) \\
& =-\frac{1}{11}
\end{align*}
$$

This leads us into the next property of limits:
The Direct Substitution Property: If f is a polynomial or rational function and \boldsymbol{a} is in the domain of the function f, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Example: find $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$ Notice that this function is not defined at $x=3$, therefore we cannot use the direct substitution property immediately. But we can simplify the function using algebra.

$$
\begin{gathered}
\frac{x^{2}-9}{x-3}=\frac{(x-3)(x+3}{(x-3)}=x+3 \quad \text { So now we can rewrite the problem as follows: } \\
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3}(x+3)=3+3=6
\end{gathered}
$$

NOTE: We were able to compute the limit by replacing the given function $f(x)=\frac{x^{2}-9}{x-3}$ with $g(x)=x+3$, with the same limit because $f(x)=g(x)$ everywhere except when $x=3$. Since we are only concerned with what happens as \boldsymbol{x} approaches 3 , and we do not compute what happens at $\boldsymbol{x}=3$, then this is okay.

Definition: If $f(x)=g(x)$ when $x \neq a$, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$, provided the limit exists.

Example: Find $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$ Notice that if we used direct substitution, the denominator would $=0$. So we need to write $\frac{\sqrt{1+t}-\sqrt{1-t}}{t}$ in a different form so that we can use direct substitution. To do this we need to rationalize the numerator.
$\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t} \cdot \frac{\sqrt{1+t}+\sqrt{1-t}}{\sqrt{1+t}+\sqrt{1-t}}=\lim _{t \rightarrow 0} \frac{(1+t)-(1-t)}{t(\sqrt{1+t}+\sqrt{1-t})}=\lim _{t \rightarrow 0} \frac{1+t-1+t}{t(\sqrt{1+t}+\sqrt{1-t})}=\lim _{t \rightarrow 0} \frac{2 t}{t(\sqrt{1+t}+\sqrt{1-t})}=$ $\lim _{t \rightarrow 0} \frac{2}{\sqrt{1+t}+\sqrt{1-t}}$ (Now we can use direction substitution) $=\frac{2}{\sqrt{1+0}+\sqrt{1-0}}=\frac{2}{1+1}=\mathbf{1}$.
So ... sometimes we need to manipulate difficult functions into functions that allow us to use direct substitution.

Next - let's discuss three theorems that will help us find limits of particular kids of functions at specific points.
1 Theorem: $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a-} f(x)=L=\lim _{x \rightarrow a+} f(x)$ (we saw this earlier as a definition and now is it a theorem)
2 Theorem: If $f(x) \leq g(x)$ when \boldsymbol{x} is near \boldsymbol{a} (except possibly at \boldsymbol{a}) and the limits of \boldsymbol{f} and \boldsymbol{g} both exist as x approaches a, then:

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

3 3 The Squeeze Theorem: If $f(x) \leq g(x) \leq h(x)$ when \boldsymbol{x} is near \boldsymbol{a} (except possibly at a) and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L, \text { then } \quad \lim _{x \rightarrow a} g(x)=L
$$

Example: Use The Squeeze Theorem to show that $\lim _{x \rightarrow 0}\left[x^{2} \boldsymbol{\operatorname { c o s }}(\mathbf{2 0} \boldsymbol{\pi} x)\right]=\mathbf{0}$
To illustrate The Squeeze Theorem let $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{2} \boldsymbol{\operatorname { c o s }}(\mathbf{2 0} \boldsymbol{\pi} \boldsymbol{x})$ and find an $f(x)$ that is $\leq g(x)$ and an $h(x)$ that is $\geq g(x)$. Let $f(x)=-x^{2}$ and $h(x)=x^{2}$. If you graph all three functions on the same coordinate plane you will see the following:

As you can see, $\mathrm{g}(\mathrm{x})$ is "squeezed" between $h(x)$ and $f(x)$. Since the limits of $h(x)$ and $f(x)$ are known to be $=0$, then by The Squeeze Theorem, the limit of $g(x)$ as x approaches zero $=0$.

